I B.Tech Supplementary Examinations, January 2014 ENGINEERING DRAWING
(Common to Electrical \& Electronic Engineering,Electrical \& Communication Engineering, Bio-Technology and Electronics \& Computer Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Two fixed points A and B are 100 mm apart. Trace the complete path of a point P moving (in the same plane as that of A and B) in such a way that, the sum of its distances from A and B is always the same and equal to 125 mm . Name the curve. Draw another curve parallel to and 25 mm away from this curve
2. Construct a cycloid, given the diameter of the generating circle is 40 mm . Draw a tangent to the curved at a point on it 30 mm from the line.
3. (a) The point A is on H.P. and 40 mm in front of V.P. Another point B is on V.P. and below H.P. The line joining their front views makes an angle of 45° with $\mathrm{x} y$, while the line Joining their top views makes an angle of 30°. Find the distance of the point B from H.P.
(b) Draw the projections of the following points in third quadrant when the
i. Point A lies in the H.P. and 22 mm away from the V.P.
ii. Point B lies in the V.P. and 32 mm away from the H.P.
iii. Point C lies 32 mm from the H.P. and 22 mm from the V.P.
4. (a) A 100 mm long line is parallel to and 40 mm above the H.P. Its two ends are 25 mm and 50 mm in front of the V.P. respectively. Draw it projections and find its inclination with the V.P.
(b) A line $\mathrm{AB}, 50 \mathrm{~mm}$ long, has its end A in both the H.P. and the V.P. Its is included at 30° to the H.P and at 45° to the V.P. Draw its projections. [8+8]
5. (a) A regular pentagon of 25 mm side has one side on the ground. Its plane is inclined at 45^{0} to the H.P. and perpendicular to the V.P. Draw its projections.
(b) Draw the projections of a circle of 5 cm diameter, having its plane vertical and inclined at 30° to the V.P. Its centre is 3 cm above the H.P. and 2 cm in front of the V.P. [8+8]
6. (a) Draw the projections of a triangular prism, base 40 mm side and axis 50 mm long, resting on one of its bases on the H.P. with a vertical face perpendicular to the V.P.
(b) A cube of 50 mm long edges is resting on the H.P. with its Vertical faces equally inclined to the V.P. Draw its projections.

Set No. 1

(c) A triangular prism, base 40 mm side and height 65 mm is resting on the H.P. on one of its rectangular faces with the axis parallel to the V.P. Draw its projections.
$[4+8+4]$
7. Draw the isometric view of a hexagonal prism, with side of base 25 mm and axis 60 mm long, The prism is resting on its base on H.P. with an edge of the base parallel to V.P. Use the box method
8. Draw the following views of the block shown in figure 8. All dimensions are in mm.

Figure 8
(a) Front View.
(b) Top view
(c) Both side views.

I B.Tech Supplementary Examinations, January 2014 ENGINEERING DRAWING
(Common to Electrical \& Electronic Engineering,Electrical \& Communication Engineering, Bio-Technology and Electronics \& Computer Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Draw a straight line $A B$ of any length. Make a point $F, 65 \mathrm{~mm}$ from $A B$.Trace the paths of a point P moving in such a way that the ratio of its distance from the point F , to its distance from AB is
(a) 1
(b) $2: 3$

Plot at least 8points. Name each curve. Draw a normal and a tangent to each curve at a point on it 45 mm from F .
2. A circle of 115 mm diameter rolls on another circle of 75 mm diameter with internal contact. Draw the locus of a point on the circumference of rolling circle for its one complete revolution.
3. (a) The point A is on H.P. and 40 mm in front of V.P. Another point B is on V.P. and below H.P. The line joining their front views makes an angle of 45° with $\mathrm{x} y$, while the line Joining their top views makes an angle of 30°. Find the distance of the point B from H.P.
(b) Draw the projections of the following points in third quadrant when the
i. Point A lies in the H.P. and 22 mm away from the V.P.
ii. Point B lies in the V.P. and 32 mm away from the H.P.
iii. Point C lies 32 mm from the H.P. and 22 mm from the V.P.
4. A line PQ, 100 mm long, is inclined at 30° to the H.P. and at 45^{0} to the V.P. Its mid point is in the V.P. and 20 mm above the H.P. Draw its projections, if its end P is in the third quadrant and Q in the first quadrant.
5. Draw the projections of a regular hexagon of 25 mm side, having one of its sides in the H.P. and inclined at 60° to the V.P, and its surface making an angle of 45° with the H.P.
6. (a) Draw the projections of
i. a cylinder, base 40 mm diameter and axis 50 mm long, and
ii. a cone, base 40 mm diameter and axis 50 mm long, resting on the H.P. on their respective bases.
(b) A hexagonal prism has one of its rectangular faces parallel to the H.P. Its axis is perpendicular to the V.P. and 3.5 cm above the ground. Draw its projections when the nearer end is 2 cm in front of the V.P. Side of base 2.5 cm long, axis 5 cm long.
(c) A cube of 40 mm side rests with one of its square faces on the H.P. such that one of its vertical faces is perpendicular to V.P. Draw its projections. The nearest edge parallel to V.P. is 5 mm in front of it.

$$
[8+4+4]
$$

7. Draw the isometric drawing of a cone of base diameter 30 mm and axis 45 mm long.
8. Draw the following views of the block shown in figure 8. All dimensions are in mm.

Figure 8
(a) Front View.
(b) Top view
(c) Both side views.

I B.Tech Supplementary Examinations, January 2014 ENGINEERING DRAWING
(Common to Electrical \& Electronic Engineering,Electrical \& Communication Engineering, Bio-Technology and Electronics \& Computer Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. A fixed point is 75 mm from a fixed straight line. Draw the locus of a point P moving such a way that its distance from the fixed straight line is
(a) twice its distance from the fixed point
(b) equal to its distance from the fixed point. Name the curves.
2. Draw a cycloid given the diameter of a rolling circle as $\mathrm{d}=30 \mathrm{~mm}$. Draw a normal and tangent at any point on the curve.
3. (a) Draw the projections of the following points on the same ground line, keeping the Projectors 25 mm apart.
i. A, in the H.P. and 20 mm behind the V.P.
ii. B, 40 mm above the H.P. and 25 mm in front of the V.P.
(b) State the quadrants with the help of drawing, in which the following points are situated
i. A point P; its top view is 40 mm above xy ; the front view 20 mm below the top view.
ii. A point Q ; its projections coincide with each other 40 mm below x y. $[8+8]$
4. (a) A line $\mathrm{AB}, 90 \mathrm{~mm}$ long is inclined at 30° to the H.P. Its end A is 12 mm above the H.P. and 20 mm in front of the V.P. Its front view measures 65 mm . Draw the top view of $A B$.
(b) A line AB 25 mm long is parallel to V.P. and perpendicular to H.P. Point A is 35 mm above H.P. and 20 mm in front of V.P. Point B is 10 mm above H.P. Draw the projections of the line AB. [6+10]
5. A regular pentagon of 30 mm side, is resting on one of its edges on H.P. which is inclined at 45^{0} to V.P. Its surface is inclined at 30° to H.P. Draw its projections.
6. (a) Draw the projections of a hexagonal prism of base 25 mm and axis 60 mm long, when it is resting on one of its corners of the base on H.P. The axis of the solid is inclined at 45^{0} to H.P.
(b) Draw the projections of a pentagonal prism of base 25 mm side and axis 50 mm long, when it is resting on one of its rectangular faces on H.P., the axis of the solid is inclined at 45° to V.P.
7. A cylindrical block of base, 60 mm diameter and height 90 mm , standing on the H.P. with its axis perpendicular to the H.P. Draw its isometric view.
8. Draw the following views of the block shown in figure 8. All dimensions are in mm.

Figure 8
(a) Front View.
(b) Top view
(c) Both side views.

Set No. 4

I B.Tech Supplementary Examinations, January 2014 ENGINEERING DRAWING
(Common to Electrical \& Electronic Engineering,Electrical \& Communication Engineering, Bio-Technology and Electronics \& Computer Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Inscribe an ellipse in a parallelogram having sides 150 mm and 100 mm long and an inclined angle of 120°.
(b) Draw a rectangle having its sides 125 mm and 75 mm long. Inscribe two parabolas in it with their axis bisecting each other.
2. A circle of 50 mm diameter rolls along a straight line without slipping. Draw the curve traced out by a point P on the circumference, for one complete revolution of the circle. Name the curve. Draw a tangent to the curve at a point on it 40 mm from the line.
3. (a) Draw the projectors of the following points in different quadrants.
i. Point A, 25 mm infront of V.P. and 30 mm above H.P.
ii. Point B, 22 mm behind V.P. and 28 mm above H.P.
iii. Point C, 28 mm behind V.P. and 30 mm below H.P
iv. Point D, 40 mm infront of V.P. and 25 mm below H.P
(b) A point P is 25 mm in front of the V.P. and 40 mm above the H.P. Another point Q is 40 mm in front of the V.P. and 25 mm above the H.P. The distance measured between the projectors is 40 mm . Draw the projections and find the distance between P and Q .
4. (a) A line PQ 75 mm long has its end P in the V.P and the end Q in the H.P. The line is inclined at 30° to the H.P. and at 60° to the V.P. Draw its projections.
(b) Draw the projections of a 65 mm long straight line, in the following positions :
i. Parallel to both the H.P and the V.P and 25 mm from each.
ii. Perpendicular to the H.P in the V.P and its one end in the H.P. $[8+8]$
5. A regular hexagonal plane of 45 mm side has a corner on H.P. and its surface is inclined at 45° to H.P. Draw the projections, when the diagonal through the corner, Which is on H.P. makes 30° with V.P.
6. Draw the projections of a cube of 25 mm long edges resting on the H.P. on one of its corners with a solid diagonal perpendicular to the V.P.
7. Draw the isometric view of a hexagonal prism, with side of base 25 mm and axis 60 mm long, The prism is resting on its base on H.P. with an edge of the base parallel to V.P. Use the box method

Set No. 4

8. Draw the following views of the block shown in figure 8. All dimensions are in mm .

Figure 8
(a) Front View.
(b) Top view
(c) Both side views.

